cubesoftware-intro/main.py
2023-05-13 22:38:38 +02:00

286 lines
7.3 KiB
Python

import pygame
import pygame.gfxdraw
from PIL import Image
import random
from math import cos, sin
##### CONFIG #####
window_size = (1280, 720)
fps = 60
# pixel size in percentage of window height (0.0 - 1.0)
pixel_size = 0.018
# min and max distance from screen edge to pixel in window height percentage (0.0 - 1.0)
min_distribution_edge_dist = 0.1
max_distribution_edge_dist = 0.2
initial_vel_randomness = 1
# max random delay of pixel simulation start in seconds
max_random_delay = 2
## simulation settings
# 0.0 - inf
stiffness = 40
# 0.0 - 1.0
damping = 0.08
##################
damping_multiplier = 1 - damping
target_delta_time = 1 / fps
half_window_size = (window_size[0] / 2, window_size[1] / 2)
print("=====================")
aspect_ratio = window_size[0] / window_size[1]
half_aspect_ratio = aspect_ratio / 2
print(f"Aspect ratio: {aspect_ratio}")
pixel_size_px = pixel_size * window_size[1]
print(f"Pixel size: {pixel_size_px}px")
# import logo image
logo = Image.open("logo_new.png").convert("1")
logo_size = (logo.size[0] * pixel_size, logo.size[1] * pixel_size)
print(f"Logo size: {logo_size}")
# offset in world space so the logo is in the center
logo_offset = (logo_size[0] / 2, logo_size[1] / 2)
print(f"Logo offset: {logo_offset}")
print("=====================")
pixels_target_pos = []
for y in range(logo.size[1]):
for x in range(logo.size[0]):
if logo.getpixel((x, y)) == 255:
pixels_target_pos.append((x * pixel_size - logo_offset[0], y * pixel_size - logo_offset[1]))
pixels_target_pos = tuple(pixels_target_pos)
## distribute pixels in random positions off the screen
pixels_pos_and_vel = []
for pixel in pixels_target_pos:
# select random screen edge axis using 1 and aspect_ratio as weights | 0 = x, 1 = y
edge_axis = random.choices((0, 1), weights=[1, aspect_ratio])[0]
# select random edge | (x axis): 0 = left, 1 = right | (y axis): 0 = top, 1 = bottom
edge = random.choice((-1, 1))
# random position on edge
if edge_axis == 0: # x axis (vertical edges)
pos = [half_aspect_ratio * edge, random.uniform(-.5, .5)]
else: # y axis (horizontal edges)
pos = [random.uniform(-half_aspect_ratio, half_aspect_ratio), edge / 2]
# offset pos by random 0 to distribution_edge_dist_px
pos[edge_axis] += random.uniform(min_distribution_edge_dist, max_distribution_edge_dist) * edge
# pos, velocity, delay
pixels_pos_and_vel.append([
pos,
[random.uniform(-initial_vel_randomness, initial_vel_randomness), random.uniform(-initial_vel_randomness, initial_vel_randomness)],
random.uniform(0, max_random_delay) + 1
])
# pygame init
pygame.init()
window = pygame.display.set_mode(window_size)
clock = pygame.time.Clock()
rot_zoom_delay = 6
rot_speed_increase = 0.2
zoom_speed_increase = 0.65
rot_speed = 0
zoom_speed = 0.04
fade_delay = 1.5
fade_speed = 255/1.5
angle = 0
zoom = 1
fade_val = 255
can_rot = False
# main loop
while True:
# events
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
window.fill((0, 0, 0))
if fade_val > 0:
if rot_zoom_delay > 0:
rot_zoom_delay -= target_delta_time
else: # zooming more and rotating
rot_speed += rot_speed_increase * target_delta_time
zoom_speed += zoom_speed_increase * target_delta_time
angle += rot_speed * target_delta_time
# rotate and zoom
rot_cos = cos(angle)
rot_sin = sin(angle)
if not can_rot:
can_rot = True
# fade
if fade_delay > 0:
fade_delay -= target_delta_time
else:
fade_val -= fade_speed * target_delta_time
if fade_val < 0:
continue
zoom *= 1 + zoom_speed * target_delta_time
# calculate pixel points positions
scaled_pixel_size_px = pixel_size_px * zoom
half_scaled_pixel_size_px = round(scaled_pixel_size_px / 2)
scaled_pixel_size_px = round(scaled_pixel_size_px)
pixel_points = (
(0, 0),
(scaled_pixel_size_px, 0),
(scaled_pixel_size_px, scaled_pixel_size_px),
(0, scaled_pixel_size_px)
)
pixel_points = tuple(
(
pixel_point[0] - half_scaled_pixel_size_px,
pixel_point[1] - half_scaled_pixel_size_px
)
for pixel_point in pixel_points
)
# rotate pixel points
if can_rot:
pixel_points = tuple(
(
pixel_point[0] * rot_cos - pixel_point[1] * rot_sin,
pixel_point[0] * rot_sin + pixel_point[1] * rot_cos
)
for pixel_point in pixel_points
)
# draw pixels
for pixel_idx, pixel in enumerate(pixels_pos_and_vel):
# check if delay is over
if pixel[2] > 0:
pixel[2] -= target_delta_time
continue
## simulation (take target_delta_time into account)
# get pixel pos and vel
pos = pixel[0]
vel = pixel[1]
# delta pos (target pos - current pos)
delta_pos = [pixels_target_pos[pixel_idx][0] - pos[0], pixels_target_pos[pixel_idx][1] - pos[1]]
# update velocity
vel[0] += delta_pos[0] * stiffness * target_delta_time
vel[1] += delta_pos[1] * stiffness * target_delta_time
# damping
vel[0] *= damping_multiplier
vel[1] *= damping_multiplier
# update pos
pos[0] += vel[0] * target_delta_time
pos[1] += vel[1] * target_delta_time
# update pixel pos and vel
pixels_pos_and_vel[pixel_idx][0:2] = [pos, vel]
## draw pixel
# rotate
if can_rot:
pixel_draw_pos = (
pos[0] * rot_cos - pos[1] * rot_sin,
pos[0] * rot_sin + pos[1] * rot_cos
)
else:
pixel_draw_pos = pos
# zoom
perceived_zoom = zoom
pixel_draw_pos = (pixel_draw_pos[0] * perceived_zoom, pixel_draw_pos[1] * perceived_zoom)
# convert to screen space
pixel_draw_pos = (
pixel_draw_pos[0] * window_size[1] + half_window_size[0],
pixel_draw_pos[1] * window_size[1] + half_window_size[1]
)
# DEBUG draw sphere
#pygame.draw.circle(window, (255, 255, 255), (round(pixel_draw_pos[0]), round(pixel_draw_pos[1])), 200, 5)
# DEBUG draw dot
#pygame.draw.circle(window, (255, 0, 0), (round(pixel_draw_pos[0]), round(pixel_draw_pos[1])), 1)
# draw pixel
points = tuple(
(round(pixel_draw_pos[0] + pixel_point[0]),
round(pixel_draw_pos[1] + pixel_point[1])) for pixel_point in pixel_points
)
pygame.gfxdraw.aapolygon(
window,
points,
(fade_val,)*3
)
pygame.gfxdraw.filled_polygon(
window,
points,
(fade_val,)*3
)
# update
pygame.display.update()
clock.tick(60)