import torch import pyaudio import numpy as np import time import onnxruntime as ort import threading ort.set_default_logger_severity(3) SAMPLERATE = 16000 class VADRecorder: #def __init__(self, target_device_name, window_size_sec = 0.2, use_onnx = True): def __init__(self, use_onnx = True): print("Loading Silero VAD model... ", end="") self.vad_model, utils = torch.hub.load( repo_or_dir="snakers4/silero-vad", model="silero_vad", force_reload=False, onnx=use_onnx ) ( _, # get_speech_timestamps _, # save_audio _, # read_audio self.VADIterator, _ # collect_chunks ) = utils print("Done!") self.vad_iterator = None def _vad_recorder(self): print("Listening...") speech_win = 0 detected_audio = [] last_chunk = np.zeros(self.window_size, dtype=np.float32) # Vad iterator needs to be reloaded because after running for a while, it freaks out and hallucinates speech. vad_iter_reload_delay = 60 * 2 vad_iter_load_time = time.time() self.vad_iterator = self.VADIterator( self.vad_model, threshold = self.vad_threshold, sampling_rate = SAMPLERATE, min_silence_duration_ms = self.min_silence_duration_ms, speech_pad_ms = self.speech_pad_ms ) while self.rec_flag: chunk = np.frombuffer(self.stream_in.read(self.window_size), dtype=np.float32) speech_dict = self.vad_iterator(chunk) # check if speech_dict is {"start": x} ir {"end": x} if speech_dict is not None: self.speech = "start" in speech_dict if self.speech: #print("Speech detected!") if speech_win == 0: detected_audio = last_chunk.tolist() speech_win += 1 detected_audio += chunk.tolist() else: if time.time() - vad_iter_load_time > vad_iter_reload_delay: self.vad_iterator.reset_states() vad_iter_load_time = time.time() self.vad_iterator = self.VADIterator( self.vad_model, threshold = self.vad_threshold, sampling_rate = SAMPLERATE, min_silence_duration_ms = self.min_silence_duration_ms, speech_pad_ms = self.speech_pad_ms ) print("Reloaded VADIterator!") if speech_win > 0: speech_win = 0 self.audios_for_whisper.append(detected_audio) last_chunk = chunk.copy() #def start_vad_recorder(self, target_device_name, window_size_sec = 0.1, vad_threshold = 0.6, min_silence_duration_ms = 150, speech_pad_ms = 0): def start_vad_recorder(self, window_size_sec = 0.1, vad_threshold = 0.6, min_silence_duration_ms = 150, speech_pad_ms = 0): self.window_size = int(window_size_sec * SAMPLERATE) self.vad_threshold = vad_threshold self.min_silence_duration_ms = min_silence_duration_ms self.speech_pad_ms = speech_pad_ms self.p = pyaudio.PyAudio() #target_device_index = None #for i in range(self.p.get_device_count()): # device_info = self.p.get_device_info_by_index(i) # if device_info['maxInputChannels'] > 0 and target_device_name in device_info['name']: # target_device_index = i # break # #if target_device_index is None: # print(f"No target device found with \"{target_device_name}\" in its name.") # exit() # #try: # self.stream_in = self.p.open(format=pyaudio.paFloat32, channels=1, rate=SAMPLERATE, input=True, frames_per_buffer=self.window_size, input_device_index=target_device_index) #except OSError: # print(f"An unexpected error occured when trying to open device stream with \"{target_device_name}\" in its name. That could be caused by the device being disabled or unplugged.") # exit() self.stream_in = self.p.open(format=pyaudio.paFloat32, channels=1, rate=SAMPLERATE, input=True, frames_per_buffer=self.window_size) self.speech = False self.audios_for_whisper = [] if self.vad_iterator is not None: self.vad_iterator.reset_states() self.rec_flag = True self.vad_rec_thread = threading.Thread(target=self._vad_recorder, daemon=True) self.vad_rec_thread.start() def stop_vad_recorder(self): self.rec_flag = False self.vad_rec_thread.join() self.stream_in.stop_stream() self.stream_in.close() self.p.terminate()