127 lines
2.7 KiB
Plaintext
127 lines
2.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import whisper\n",
|
|
"from tts_stream import TTSstream"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sounddevice as sd\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import torch\n",
|
|
"\n",
|
|
"# force matplotlib gui backend\n",
|
|
"import matplotlib\n",
|
|
"matplotlib.use('TkAgg')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"Loading whisper model...\")\n",
|
|
"\n",
|
|
"if torch.cuda.is_available():\n",
|
|
" print(\"using CUDA\")\n",
|
|
" device = \"cuda\"\n",
|
|
"else:\n",
|
|
" print(\"using CPU\")\n",
|
|
" device = \"cpu\"\n",
|
|
"\n",
|
|
"model = whisper.load_model(\"medium\").to(device)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tts = TTSstream(speaker_wav=\"voices/lector.wav\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# optional for changing speaker to some another one\n",
|
|
"tts.change_speaker(\"voices/speaker_name.wav\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# record 10 seconds of audio with sounddevice\n",
|
|
"print(\"Recording audio...\")\n",
|
|
"\n",
|
|
"fs = 16000\n",
|
|
"duration = 4\n",
|
|
"frames = sd.rec(int(duration * fs), samplerate=fs, channels=1)\n",
|
|
"sd.wait()\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"frames = frames[:, 0]\n",
|
|
"#frames /= np.max(np.abs(frames))\n",
|
|
"\n",
|
|
"\n",
|
|
"## plot audio\n",
|
|
"#plt.plot(frames)\n",
|
|
"## set plot range to -1, 1\n",
|
|
"#plt.ylim(-1, 1)\n",
|
|
"#plt.show()\n",
|
|
"\n",
|
|
"# recognize text from audio\n",
|
|
"print(\"Recognizing text...\")\n",
|
|
"\n",
|
|
"result = model.transcribe(frames, language=\"pl\", fp16=False)\n",
|
|
"whisper_text = result[\"text\"]\n",
|
|
"print(whisper_text)\n",
|
|
"\n",
|
|
"# synthesize text to audio\n",
|
|
"print(\"Synthesizing audio...\")\n",
|
|
"tts.tts_speak(whisper_text)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|