big tts and speech recognition update

This commit is contained in:
Looki2000 2023-11-15 19:57:17 +01:00
parent c87486728d
commit 6a24bee99b
6 changed files with 295 additions and 1 deletions

6
.gitignore vendored
View File

@ -1,3 +1,9 @@
finetune_dialogs_tool/temp/
finetune_dialogs_tool/output_dialogs/
finetune_dialogs_tool/__pycache__/
frontend/voices/*
!frontend/voices/lector.wav
!frontend/voices/lector source.txt
frontend/__pycache__/

55
frontend/tts test.ipynb Normal file
View File

@ -0,0 +1,55 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tts_stream import TTSstream\n",
"\n",
"tts = TTSstream(speaker_wav=\"voices/lector.wav\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# optional for changing speaker to some another one\n",
"tts.change_speaker(\"voices/speaker_name.wav\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tts.tts_speak(\"Testowanie syntezy naturalnego głosu za pomocą sztucznej sieci neuronowej.\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

106
frontend/tts_stream.py Normal file
View File

@ -0,0 +1,106 @@
import os
import torch
import pyaudio
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
import threading
import time
# Check if CUDA is available
if torch.cuda.is_available():
print("Using CUDA")
device = "cuda"
else:
print("Using CPU")
device = "cpu"
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
class TTSstream:
def __init__(self, speaker_wav):
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
#print(model_path)
#
# download model if it doesn't exist
if not os.path.exists(os.path.join(model_path, "config.json")):
print("Downloading model...")
tts = TTS()
tts.download_model_by_name(model_name=model_name)
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
self.model = Xtts.init_from_config(config)
self.model.load_checkpoint(
config,
checkpoint_path=os.path.join(model_path, "model.pth"),
vocab_path=os.path.join(model_path, "vocab.json"),
eval=True,
use_deepspeed=False
)
self.model.to(device)
self.gpt_cond_latent, self.speaker_embedding = self.model.get_conditioning_latents(audio_path=speaker_wav)
def change_speaker(self, speaker_wav):
self.gpt_cond_latent, self.speaker_embedding = self.model.get_conditioning_latents(audio_path=speaker_wav)
def _write_stream(self):
# play first play_buffer_size samples and remove them from the buffer
while True:
if len(self.chunks_bin) > 0:
self.chunk = self.chunks_bin[:self.play_buffer_size]
self.chunks_bin = self.chunks_bin[self.play_buffer_size:]
self.stream.write(self.chunk)
else:
if self.all_done:
break
time.sleep(0.01)
def tts_speak(self, text):
self.play_buffer_size = 512
chunks = self.model.inference_stream(
text,
"pl",
self.gpt_cond_latent,
self.speaker_embedding,
stream_chunk_size=20,
)
# open pyaudio stream
p = pyaudio.PyAudio()
self.stream = p.open(format=pyaudio.paFloat32, channels=1, rate=24000, output=True)
self.chunks_bin = b""
self.all_done = False
# run write_stream as thread
thread = threading.Thread(target=self._write_stream)
thread.start()
while True:
try:
# read chunks from chunks generator as they are generated
for self.chunk in chunks:
self.chunks_bin += self.chunk.cpu().numpy().astype("float32").tobytes()
break
# some weird error caused by coqui-tts
except:
print("Error occured when generating audio stream. Retrying...")
continue
self.all_done = True
# wait for thread to finish
thread.join()
self.stream.close()
p.terminate()

View File

@ -0,0 +1 @@
https://opengameart.org/content/voiceover-pack-fighter-40-taunts

BIN
frontend/voices/lector.wav Normal file

Binary file not shown.

View File

@ -0,0 +1,126 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import whisper\n",
"from tts_stream import TTSstream"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sounddevice as sd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import torch\n",
"\n",
"# force matplotlib gui backend\n",
"import matplotlib\n",
"matplotlib.use('TkAgg')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Loading whisper model...\")\n",
"\n",
"if torch.cuda.is_available():\n",
" print(\"using CUDA\")\n",
" device = \"cuda\"\n",
"else:\n",
" print(\"using CPU\")\n",
" device = \"cpu\"\n",
"\n",
"model = whisper.load_model(\"medium\").to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tts = TTSstream(speaker_wav=\"voices/lector.wav\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# optional for changing speaker to some another one\n",
"tts.change_speaker(\"voices/speaker_name.wav\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# record 10 seconds of audio with sounddevice\n",
"print(\"Recording audio...\")\n",
"\n",
"fs = 16000\n",
"duration = 4\n",
"frames = sd.rec(int(duration * fs), samplerate=fs, channels=1)\n",
"sd.wait()\n",
"\n",
"\n",
"\n",
"frames = frames[:, 0]\n",
"#frames /= np.max(np.abs(frames))\n",
"\n",
"\n",
"## plot audio\n",
"#plt.plot(frames)\n",
"## set plot range to -1, 1\n",
"#plt.ylim(-1, 1)\n",
"#plt.show()\n",
"\n",
"# recognize text from audio\n",
"print(\"Recognizing text...\")\n",
"\n",
"result = model.transcribe(frames, language=\"pl\", fp16=False)\n",
"whisper_text = result[\"text\"]\n",
"print(whisper_text)\n",
"\n",
"# synthesize text to audio\n",
"print(\"Synthesizing audio...\")\n",
"tts.tts_speak(whisper_text)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}